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Abstract. The lattice dynamics of β-PbF2, α-PbF2 and cubic BaF2 were studied using density-functional
perturbation theory. These calculations show that the bonding in the two PbF2 polymorphs is very sim-
ilar. Phonon densities of states and heat capacities have been calculated and compared to the available
experimental data. The results imply that anharmonicity begins to become significant already at temper-
atures as low as ∼100 K. The computed elastic stiffness coefficients of the PbF2 polymorphs are used to
discuss the unusual observation that the denser orthorhombic polymorph, thought to be the high pressure
modification, is significantly more compressible than the cubic form.

PACS. 62.20.Dc Elasticity, elastic constants – 63.20.Dj Phonon states and bands, normal modes, and
phonon dispersion – 65.40.Ba Heat capacity – 71.15.Nc Total energy and cohesive energy calculations

1 Introduction

Fluorides constitute a large family of compounds with in-
teresting physical properties, crystallizing in a variety of
structures [1–6]. Many of them are already employed in
technological applications, such as e.g. optical coatings.
Specifically, fluorides crystallizing in the fluorite struc-
ture have been studied extensively (see references in [7]).
However, several open questions pertaining to structure-
property relationships remain. The clarification of many
of these will rely on atomistic model calculations, so we
considered it worthwhile to complement the existing body
of knowledge with a quantum mechanical study of PbF2

and related BaF2.
Cubic β-PbF2 has attracted considerable attention as

it becomes a superionic conductor at the relatively low
temperature of 710 K [8]. The β-polymorph crystallizes in
the fluorite-type structure with space group Fm3̄m, cell
parameter a = 5.94 Å and atomic positions (0, 0, 0) for
Pb and (1

4 , 1
4 , 1

4 ) for F [1]. The orthorhombic α-polymorph
crystallizes in the cotunnite type structure with space
group Pnma and cell parameters a = 6.440 Å, b = 3.899 Å
and c = 7.651 Å [2]. There has been a controversial discus-
sion about the relative stability of the α- and β-polymorph
at ambient conditions. Using a Pb/β-PbF2//KF(aq)//α-
PbF2/Pb electrochemical cell, Kennedy et al. [9] measured
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an open circuit potential of +1.7 mV, indicating that the
β form is more stable by ∼0.33 kJ/mol. However, this con-
clusion has been questioned on the basis of high-pressure
differential thermal analysis (DTA) [10] and elastic con-
stants data [11]. Volodkovich et al. [12] considered the
α-phase to be thermodynamically stable and the β-phase
being metastable at room temperature. However, the basis
for this point of view was not elucidated. Hence, additional
information with respect to the relative stability is of in-
terest, and here quantum mechanical model calculations
have been used to discuss the contribution of the lattice
energies.

Interatomic interactions can be studied by investigat-
ing the lattice dynamics. Phonon dispersion curves of β-
PbF2 were determined by coherent inelastic neutron scat-
tering at 10 K [13] and, with the exception of the optic
phonon with the highest frequency, the lattice dynamics
of this compound are therefore well-known. The phonon
density of states has been constructed from the experi-
mental data by fitting a core-shell model to the phonon
dispersion curves [13]. As a result of the lack of measure-
ments at high frequencies, the reliability of the core-shell
model for this part of the spectrum is questionable, and
the rather steep dispersion of the highest frequency optic
branch in the [ξξξ]-direction predicted by the core-shell
model calculations remains to be verified. Quantum me-
chanical calculations can be employed to compute phonon
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dispersion relations [14], and here the lattice dynamics and
the thermodynamic properties of β-PbF2 in the harmonic
approximation are discussed.

The computed thermodynamic properties can be com-
pared to experimentally determined heat capacity data.
At low temperatures between 3 and 22 K one data set was
presented [15], while two data sets were obtained at higher
temperatures [12,16]. They are in rather poor agreement
with each other.

The elastic stiffness coefficients of crystals reflect the
dominating interatomic interactions. For β-PbF2, all com-
ponents of the elastic tensor cij were determined experi-
mentally [11,17], while for the α-phase only the bulk mod-
ulus was obtained from compression measurements [18].

To further evaluate the results obtained for β-
PbF2, the isostructural cubic compound BaF2, which
becomes superionic at significantly higher temperatures
≈1300 K [19], was studied. In particular BaF2 has been
chosen since reliable experimental data are available. Its
lattice dynamics was studied in detail [20] and the spe-
cific heat was measured in the temperature region from 3
to 300 K [21,22].

2 Computational details

The quantum mechanical calculations performed here are
based on density functional theory, DFT. While DFT it-
self is exact [23,24], practical calculations require an ap-
proximation for the treatment of the exchange and cor-
relation energies. Here the well-established local density
approximation (LDA) [24] and the generalized gradient
approximation (GGA) [25] were used. Full geometry opti-
mizations of structures with several structural degrees of
freedom are most efficiently performed if the stress tensor
for a given configuration can be evaluated, which is most
straightforward in the computational approaches that use
a basis set of plane waves to represent the charge density
and electronic wavefunctions. However, as it is impracti-
cal to consider tightly bound core electrons explicitly when
using a plane-wave basis set, pseudopotentials have to be
used to mimic the screening of the Coulomb potential of
the nucleus by the core electrons. A number of approaches
for the construction of pseudopotentials have been pre-
sented in the literature [26,27]. Here, norm-conserving and
ultrasoft pseudopotentials [28,29] have been used. The
former are required for ‘linear response’ calculations, for
which an implementation with ultrasoft pseudopotentials
is not yet available, while the computationally more effi-
cient ultrasoft pseudopotentials have been used to study
elastic stiffness coefficients.

Lattice dynamics calculations of cubic BaF2, β- and
α-PbF2 have been performed using the ABINIT (v. 3.4.3)
pseudopotential plane-wave code [30]. We used norm-
conserving pseudopotentials taken from the ABINIT data
base. For Ba and Pb we used the ‘Teter extended
norm-conserving’ pseudopotentials, and for F the norm-
conserving Troullier-Martins pseudopotential [31]. Based
on convergence studies we chose a cutoff energy of 80 Ha
as the cutoff energy for the PbF2-polymorphs. In addition

Table 1. Comparison of measured and calculated cell param-
eters of the two PbF2-polymorphs and cubic BaF2. Exper-
imental cell parameters and densities for α-PbF2 are taken
from [1,2], for β-PbF2 from [1] and for cubic BaF2 from [33].

Compound Exp. DFT-LDA DFT-GGA

α-PbF2 a [Å] 6.44 6.314 6.599

b [Å] 3.899 3.812 3.968

c [Å] 7.651 7.558 7.851

density [g/cm3] 8.45 8.96 7.93

β-PbF2 a [Å] 5.943 5.832 6.029

density [g/cm3] 7.75 8.21 7.45

BaF2 a [Å] 6.196 6.095 6.261

density [g/cm3] 4.89 5.15 4.75

to the cutoff energy, only one further parameter deter-
mines the quality of the calculations, namely the density
of points with which the Brillouin zone is sampled. For β-
PbF2 we used a 4×4×4 k-point grid without shifts. This
corresponds to 8 k-points for the unperturbed structure,
and 64 k-points for the calculation of the perturbed struc-
ture, necessary to obtain the complete dynamical matrix.
For the ground state calculations of α-PbF2 a 2 × 4 × 2
k-point grid without shifts was employed. For the calcu-
lations of BaF2 a cutoff energy of 50 Ha and a 2 × 2 × 2
k-point grid with 4 shifts were used. This k-point grid re-
sults in 2 k-points for the unperturbed structure and 32
k-points for the perturbed one.

Elastic stiffness coefficients of PbF2 have been
calculated using the pseudopotential plane-wave code
CASTEP [32] with ultrasoft pseudopotentials from the
CASTEP database. The calculation of elastic constants is
based on applying small strains to the ground state struc-
ture, followed by relaxation of the atomic positions and a
subsequent computation of the stress tensor. Elastic coef-
ficients were determined from a linear fit of the computed
stress to the applied strain, where 6 strain amplitudes up
to a maximum of 0.003 have been used. A cutoff energy
of 13.6 Ha and 24 k-points have been used.

3 Results and discussion

The cell parameters obtained from the ground state calcu-
lations of the two PbF2-polymorphs and cubic BaF2 are
listed in Table 1. They are in a good agreement with exper-
imental data [1,2,33]. As expected, the LDA-calculations
show the effect of overbinding and give lattice parameters
too small by 2%, while the GGA calculations give lattice
parameters too large by 2%. From these calculations, the
β-phase is more stable by 2−7 kJ/mol, depending on the
pseudopotentials and the exchange-correlation functional
used.

The elastic stiffness tensor cij (in Voigt’s notation) of
cubic crystals has three independent components, c11, c12
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Table 2. Comparison between elastic stiffness coefficients of β-PbF2 obtained from DFT-GGA calculations, experimentally
determined values at ambient temperature, experimental values extrapolated to low temperatures and those obtained from the
core-shell model calculations, where the parameters have been fitted to phonon dispersion curves obtained at 10 K.

Calc. DFT Exp. ultrasound Extrapolated to 0 K Exp. from phonons

(athermal) at RT [11,17] from [17] at 10 K [13]

c11 [GPa] 105 96 115 105−119

c12 [GPa] 52 47 57 49−64

c44 [GPa] 27.8 21 22 23.6−24.5

and c44. The calculated components of the elastic stiffness
tensor of β-PbF2 are compared to data obtained from
ultrasound spectroscopy [17] after extrapolation to low
temperatures (Tab. 2).

This extrapolation to low temperatures is required,
as the elastic stiffness constants were calculated in the
athermal limit and the experimental data show a signifi-
cant temperature dependence. For the comparison of the
results obtained here with those from earlier core-shell
model calculations such an extrapolation was not neces-
sary, since the core-shell model was derived from phonon
measurements at 10 K [13]. The agreement between the
core-shell model calculations and the DFT-based calcula-
tions is good, the largest discrepancy is 10% for c44. With
the exception of c44, the values computed here are between
the values obtained at 300 K from ultrasound experiments
and those extrapolated to 0 K linearly. This most proba-
bly suggests that the temperature derivative of the ther-
mal expansion coefficient is not a constant over the whole
range, and that at low temperatures the temperature-
induced change of the thermal expansion is smaller than
at high temperatures. The 20% disagreement between the
value of c44 determined by ultrasonic measurements and
the theoretical value obtained here is most probably due
to a frequently observed systematic overestimation of the
covalent bonding in DFT-calculations [34].

A comparison of the computed to the experimentally
determined bulk modulus again shows the influence of
temperature. The bulk modulus, b0, can be calculated
from the elastic compliance matrix, sij , which is recip-
rocal to the elastic stiffness matrix, i.e. (sij) = (cij)−1, so
that

KT =
1
b0

=
3∑

i=1

3∑
j=1

sij , (1)

where KT is the isothermal compressibility. The calcu-
lated b0 from the elastic constants is 69.7 GPa, in be-
tween the value calculated from the elastic constants mea-
sured at room temperature (b0,300K = 63.2 GPa) and the
b0 obtained from elastic constants extrapolated to 0 K,
b0,0K = 76.3 GPa (see Tab. 2). The value we obtained for
the bulk modulus is similar to a gradient-corrected full-
potential linear muffin-tin orbital calculation [35], where
a value of b0 = 71 GPa was obtained, while a Hartree-
Fock based study [36] obtained a significantly lower value
of 56 GPa.

We also have predicted the elastic stiffness tensor for
α-PbF2. The computed values for the cij are (in GPa):
c11 = 87, c22 = 103, c33 = 93, c44 = 20, c55 = 23,
c66 = 27, c12 = 47, c13 = 46, and c23 = 50. The numeri-
cal errors associated with each components are about 5%.
These components have not been determined experimen-
tally, as this would require a large single crystal. However,
the bulk modulus has been obtained from an X-ray high-
pressure study, where an isothermal equation of state gave
b0 = 47.0(6) GPa at room temperature [18]. This value is
more reliable than a value of 117(4) GPa obtained earlier
in a restricted pressure range [8]. We obtained a bulk mod-
ulus of b0 = 63 GPa. Again, a significant part of the dis-
crepancy will be due to the neglect of the influence of tem-
perature in the present study. However, both experimental
measurements and quantum mechanical models show un-
ambiguously that the orthorhombic α-PbF2 is denser by
6% then the β-phase. Usually the compressibility of the
denser polymorph is smaller. This would not necessarily be
the case if the compression mechanism of the high pressure
form was significantly different from that of the low pres-
sure form. The compression mechanism of the α-phase has
been studied experimentally [18]. While in the cubic poly-
morph compression does not change the relative atomic
arrangement, pressure increase leads to a distortion of
the coordination polyhedron in the α-phase. The latter
compression mechanism seems to be energetically much
more favorable and hence the bulk modulus of α-PbF2 is
smaller than that of β-PbF2, despite the α-polymorph be-
ing denser. If we assume that the temperature dependence
of b is similar for the two polymorphs, then the agreement
between the value computed here (63 GPa) and the ex-
perimental value extrapolated to 0 K (≈56 GPa) is satis-
factory also for α-PbF2.

The results of the lattice dynamics calculations for the
cubic polymorphs of PbF2 and BaF2 are shown in Fig-
ures 1 and 2, where they are compared to neutron scatter-
ing data. Our calculations reproduce the experimentally
determined phonon dispersion curves with the accuracy
expected from DFT-LDA linear response calculations. For
calculations of the phonon frequencies at the Γ -point the
coupling between atomic displacements and the electric
field has to be taken into account. This interaction causes
a splitting between the longitudinal and transverse optic
modes at the Γ -point, the so-called LO-TO splitting. The
computation of the value of LO-TO splitting is based on
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Fig. 1. Measured (at 10 K) and calculated (lines) phonon dis-
persion relations for β-PbF2 in three high symmetry directions.
Closed (open) circles are predominantly transverse (longitudi-
nal) modes. The crosses represent observed points for which a
symmetry assignment was not possible [13].

Fig. 2. Measured (at 300 K) and calculated (lines) phonon dis-
persion relations for BaF2 in three high symmetry directions.
Different point symbols correspond to the different group rep-
resentation of the measured phonons [20].

the computation of the Born effective charges, which we
obtained to be 3.24 and −1.62e for Pb and F, respectively.
The calculated LO-TO splitting in β-PbF2 is 211 cm−1.

For β-PbF2 our calculations clearly indicate that the
highest optic branch remains nearly dispersionless in the
[ξξξ]-direction, in contrast to the prediction of the ear-
lier core-shell model calculations [13]. The highest fre-
quency optic branch remains also nearly dispersionless in
the other directions. This is also evident in the density
of states (Fig. 3), where the quantum mechanical model
gives a much more localized distribution over 60 cm−1 in

Fig. 3. Phonon density of states of cubic PbF2. The solid line
represents a density of states derived from empirical model
calculations, where the parameters had been fitted to coher-
ent inelastic neutron scattering data [13]. The DOS given by
the dashed line has been obtained from linear response calcu-
lations.

the high frequency region then the core-shell model cal-
culations. This high frequency phonon is dominated by
the dynamics of the light fluorine ions, and hence the cur-
rent results indicate a comparatively weak bonding of the
fluorine ions to the cation sublattice and, subsequently, a
weak correlation between the dynamics of individual flu-
orine ions. In isostructural CaF2 for example, the same
phonon is at 330−470 cm−1 [37], i.e. it has a significantly
higher energy and a dispersion twice as large as in PbF2.
This is due to the fact that the cation-anion bond in CaF2

is much stronger than in PbF2 and the dynamics of the
anions displays a larger degree of correlation.

Because of the lower symmetry of α-PbF2, the analo-
gous calculations require significantly more computational
resources. As no large single crystals are available it is
unlikely that full phonon dispersion curves will be deter-
mined experimentally, and hence we restricted the calcu-
lations to a set of 4 k-points, which is sufficient to demon-
strate that the phonon frequencies in the two polymorphs
are very similar. In both cases a high frequency regime
from 300−360 cm−1 is separated by a gap from a low fre-
quency regime from 0−260 cm−1. Hence, the bonding in
the two polymorphs is very similar as well.

The specific heat at constant volume, CV , of β-PbF2

(Fig. 4) has been calculated from the density of states. For
comparing to experimental data, CV has to be converted
to specific heat at constant pressure, CP . Within the
harmonic approximation the relation between the molar
specific heat capacities CV and CP is expressed by the
formula:

CP = CV + TV β2/KT , (2)
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Fig. 4. Experimentally determined and calculated specific
heat of cubic PbF2. The low-temperature data have been mea-
sured by [15] (full triangles). The high-temperature data have
been measured by [16] (open circles) and by [12] (full circles).
The cross represents the room temperature (298 K) specific
heat obtained as a slope of the high temperature heat content,
which is linear up to about 600 K [38].

where V is the molar volume, β is the thermal expan-
sion coefficient and KT is the isothermal compressibility.
For β-PbF2, the molar volume V = 31.6 cm3/mol,
KT = 1/b0 = 0.0159 GPa−1, where the bulk modu-
lus b0 (at 300 K) has been calculated from the elas-
tic constants obtained from ultrasonic measurements [17]
and the thermal expansion coefficient was taken to be
β(T ) = 2.73 × 10−6 + 7.03 × 10−8T [17]. This implies
that within the investigated temperature range the maxi-
mal difference between CV and CP is 1.2 J mol−1 K−1 at
high temperatures, and hence can be neglected.

At low temperatures (T < 25 K), the theoretical val-
ues for the heat capacity agree with experimentally deter-
mined ones to within 0.5 Jmol−1 K−1. This is sufficient for
most investigations. Probably an even better sampling of
reciprocal space would improve the agreement, as a com-
parison with experiment shows an initial overestimation
of CP , indicative of an overestimation of the influence
of the acoustic phonons. At high temperatures, CV cal-
culated in the harmonic approximation will approach the
limiting Dulong-Petit value of 9R. Two experimentally de-
termined data sets for the high-temperatures region differ
significantly [12,16]. In fact, the values by [16] are smaller
than the ones we calculated here, which indicates a mea-
surement error, as the calculations in the harmonic ap-
proximation on an ideal defect free crystal present a lower
boundary. A value for the room temperature CP , derived
as a slope of the high temperature heat content, seems to
be far too large [38]. A comparison to the data of [12] al-
lows to compute the influence of anharmonicity, which is
about 5 J mol−1 K−1 at 350 K. Regrettably, no data is cur-
rently available for the intermediate temperature region.

Fig. 5. Calculated phonon density of states of cubic BaF2.

Fig. 6. Computed specific heat (line) of BaF2 is compared to
measured between 3 and 25 K specific heat data [21] (open
triangles) and the data measured from 25 to 300 K [22] (full
circles).

Similar calculations as those described above have
been performed for cubic BaF2 (Figs. 5 and 6). The values
of the Born effective charges are 2.61 and −1.30e for Ba
and F, respectively. The corresponding value of the LO-
TO splitting is 149 cm−1. The dispersion of the highest
frequency optic mode is about 100 cm−1, in between the
value of PbF2 and CaF2. Experimentally obtained specific
heat data are available from low temperatures up to 300 K
and are compared to the data obtained from the density
of states in Figure 6. A similar calculation as presented
above for β-PbF2 shows that the difference between CV

and CP is negligible. The comparison shows that the error
due to a too coarse sampling of reciprocal space, slightly
inaccurate phonon frequencies, the neglect of defects and
the influence of temperature etc. is again of the order of
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1 J mol−1 K−1. At 300 K the experimental and the theo-
retical values differ by 2−3 J mol−1 K−1, which is similar
to what an extrapolation would give in the case of β-PbF2.

4 Conclusions

The current calculations have shown, that in the ather-
mal limit the ground state structure of PbF2 is the cubic
polymorph. The lattice dynamics, and hence the entropic
contribution to the Gibbs free energy in the harmonic
approximation, are very similar for the two polymorphs.
Therefore, more extensive accurate calculations, especially
for α-PbF2, are required to make quantitative predictions
of the relative stability of the polymorphs.

Our calculations of the heat capacities show that at low
temperatures the current approach reproduces the experi-
mental values of heat capacities to within 0.5 J mol−1 K−1.
Noticeable deviations from the harmonic approximation
are evident for BaF2 already at rather low temperatures
of 100 K. Although we are not aware of heat capacity
data for β-PbF2 between 22 K and 360 K, the similar-
ity to BaF2 allows to confidently interpolate between the
available data sets, and this would then imply that anhar-
monicity becomes noticeable in β-PbF2 also at rather low
temperatures of 100 K.

The difference between the lattice dynamics of PbF2

and BaF2 is small, and for the low lying phonons it is
due to the mass difference between Ba and Pb. This is
confirmed by the simple comparison of the frequencies in
the X-point of the Brilloiun zone:

ωBa

ωPb
=

√
MPb

MBa
(3)

where ωPb, ωBa are frequencies in the X-point of the
Brillouin zone, and MPb, MBa are atomic masses of Pb and
Ba respectively. Frequencies at the X-point are compared
because this corresponds to the lattice dynamics of planes
with two different masses stacked along the direction [100].
Then, the frequency of the lowest optic branch is inversely
proportional to the square root of the mass of the cation.
In our case ωPb = 155 cm−1 and ωBa = 197 cm−1. Atomic
masses of Pb and Ba are 207.20 and 137.33 respectively.
Substituting these numbers into equation (3) yields an
agreement between the two sides within 3.4%, which again
shows that the exchange of Pb with Ba does not alter the
character of the bonding significantly. To illuminate the
effect where a substitution does change the bonding, we
compare our results to the lattice dynamics of CaF2. The
frequency ωCa at the X-point of the corresponding optic
branch for CaF2 is equal to 190 cm−1 [37] and the atomic
mass of Ca is 40.08. Substitution of frequency ωCa and
mass MCa instead of ωBa and MBa in the relation (3) gives
a factor of nearly two between the left and right hand side
of equation (3).

Of the three fluorides compared here, CaF2 has the
highest transition temperature into the superionic con-
ducting phase of 1370 K [39]. This is not very much higher
than the transition temperature of 1300 K reported for

BaF2 [19], while PbF2 becomes superionic conducting at
much lower temperatures (710 K) [8]. However, it seems
that none of the physical properties studied here is cor-
related with the significant differences in these transition
temperatures.
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26, 4199 (1982)

27. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425
(1982)

28. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)
29. C. Lee, D. Vanderbilt, K. Laasonen, R. Car, M. Parrinello,

Phys. Rev. B 47, 4863 (1993)
30. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux,

M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete,
G. Zerah, M. Jollet, F. Torrent, A. Roy, M. Mikami,
Ph. Ghosez, J.-Y. Raty, D.C. Allan, Comput. Mat. Sci.
25, 478 (2002)

31. http://www.abinit.org/

32. S.J. Clark, M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J.
Pickard, P.J. Hasnip, M.C. Payne, J. Phys.: Condens.
Matt. 14, 2717 (2002)

33. A.S. Radtke, G.E Brown, Am. Mineralogist 59, 885 (1974)
34. B. Winkler, M. Hytha, M.C. Warren, V. Milman, J.D.

Gale, J. Schreuer, Z. Kristallogr. 216, 67 (2001)
35. H.E. Lorenzana, J.E. Klepeis, M.J. Lipp, W.J. Evans, H.B.

Radousky, M. van Schilfgaarde, Phys. Rev. B 56, 543
(1997)

36. A. Costales, M.A. Blanco, R. Pandey, J.M. Recio, Phys.
Rev. B 61, 11359 (2000)

37. M.M. Elcombe, A.W. Pryor, J. Phys. C 3, 492 (1970)
38. C.E. Derrington, A. Navrotsky, M. O’Keeffe, Solid State

Commun. 18, 47 (1976)
39. B.M. Voronin, S.V. Volkov, J. Phys. Chem. Sol. 62, 1349

(2001)


